Non-asymptotic confidence bounds for the optimal value of a stochastic program

نویسندگان

  • Vincent Guigues
  • Anatoli Juditsky
  • Arkadi Nemirovski
چکیده

We discuss a general approach to building non-asymptotic confidence bounds for stochastic optimization problems. Our principal contribution is the observation that a Sample Average Approximation of a problem supplies upper and lower bounds for the optimal value of the problem which are essentially better than the quality of the corresponding optimal solutions. At the same time, such bounds are more reliable than “standard” confidence bounds obtained through the asymptotic approach. We also discuss bounding the optimal value of MinMax Stochastic Optimization and stochastically constrained problems. We conclude with a small simulation study illustrating the numerical behavior of the proposed bounds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact maximum coverage probabilities of confidence intervals with increasing bounds for Poisson distribution mean

 ‎A Poisson distribution is well used as a standard model for analyzing count data‎. ‎So the Poisson distribution parameter estimation is widely applied in practice‎. ‎Providing accurate confidence intervals for the discrete distribution parameters is very difficult‎. ‎So far‎, ‎many asymptotic confidence intervals for the mean of Poisson distribution is provided‎. ‎It is known that the coverag...

متن کامل

On Convergence of Kernel Learning Estimators

The paper studies kernel regression learning from stochastic optimization and ill-posedness point of view. Namely, the convergence properties of kernel learning estimators are investigated under a gradual elimination of the regularization parameter with rising number of observations. We derive computable non-asymptotic bounds on the deviation of the expected risk from its best possible value an...

متن کامل

MODIFICATION OF THE OPTIMAL HOMOTOPY ASYMPTOTIC METHOD FOR LANE-EMDEN TYPE EQUATIONS

In this paper, modication of the optimal homotopy asymptotic method (MOHAM) is appliedupon singular initial value Lane-Emden type equations and results are compared with the available exactsolutions. The modied algorithm give the exact solution for dierential equations by using one iterationonly.

متن کامل

Confidence level solutions for stochastic programming

We propose an alternative approach to stochastic programming based on MonteCarlo sampling and stochastic gradient optimization. The procedure is by essence probabilistic and the computed solution is a random variable. The associated objective value is doubly random, since it depends on two outcomes: the event in the stochastic program and the randomized algorithm. We propose a solution concept ...

متن کامل

Multistep stochastic mirror descent for risk-averse convex stochastic programs based on extended polyhedral risk measures

We consider risk-averse convex stochastic programs expressed in terms of extended polyhedral risk measures. We derive computable confidence intervals on the optimal value of such stochastic programs using the Robust Stochastic Approximation and the Stochastic Mirror Descent (SMD) algorithms. When the objective functions are uniformly convex, we also propose a multistep extension of the Stochast...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optimization Methods and Software

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2017